ICERM Workshop
Lattice paint counting and hongeneoas dynamics

June 2020

Lattice point counting and homogeneous Dynamics
Honegenous space pils Γ - a lattice
(Alscrete s.g Volfaic)<a
Dynamilsi actich of subyrong $H \leq G$ or

$$
\Pi G G H
$$

Lailtice punts on G (G/H)
 IGSG

Todgy: $\sigma=\mathbb{R}^{2} \quad P=\pi^{2}$ $B_{T} \subseteq \mathbb{R}^{2}$ nice grouing stes $\operatorname{cosin} t-1 \mathbb{Z}^{2} \cap B_{-} \mid$
$\frac{\text { Gevhitnc punciple }}{t}$

${ }_{\text {of }}{ }^{T} 3_{T}$
sover $\quad n \in B_{T}$
by 1×1 sqaave

$$
\begin{aligned}
& \text { Aval| } \left.\mid B_{T}\right) \leq\left|\Omega^{2} \cap B_{T}\right| \leq \operatorname{Areq}\left(B_{T}^{+}\right) \\
& \text {A.eq }\left(B_{\Gamma}^{+} B_{T}^{B}\right) \approx\left|\partial B_{T}\right|
\end{aligned}
$$

conclusion

$$
\left|R^{2} \cap B_{r}\right|=\operatorname{Arca}\left(B_{+}\right)+O \mid\left(\partial B_{A}\right)
$$

Qnestahivh化 If

$$
\text { Aveal } B_{T}|\approx| \partial B_{T} \mid \text { ? }
$$

Exanple:

$$
\begin{array}{r}
\operatorname{Arg}\left(B_{T}\right)=T \quad\left|B_{T}\right|=4 T+1 \\
0 \leq\left|B_{T} \cap \lambda^{2}\right| \leq 2 T+1
\end{array}
$$

What if we rotate B+

Dynanls on $\pi=\mathbb{R}^{2} / \mathbb{R}^{2}$
Fix $x_{0}<\pi \quad \underline{u}<S^{\prime}$

$$
\begin{aligned}
& +x=x_{0}<\pi \\
& V_{t}=v_{t}\left(x_{0}, \underline{u}\right)=\underline{x}_{0}+t \underline{u} \operatorname{lnd} \pi^{2}, ~
\end{aligned}
$$

slope: $\alpha=\frac{u_{2}}{u_{1}}$
If $\alpha \in \mathbb{U}$, onbit is choed
for $\alpha \in \mathbb{R}$ (1)
clani The orblt
$\left.\overline{\left[V_{t} \mid\right.}|t| \leq T\right]$ equidistrbutel on $\bar{\pi}$ as $T \longrightarrow \infty$

This means any of the fulluring:

$$
\begin{aligned}
& \text { 1) } \forall A \leq \pi \text { Area } / \text { AA) }=0 \\
& \frac{||t|<T| U_{t} \in A \mid}{2 T} \text { freq }(A) \\
& \text { 2) } \forall f \in L^{2}(\pi) f-c m t \\
& \frac{1}{2 T} \int_{-T}^{T} f\left(v_{t}\right) A t \rightarrow S_{\pi} \\
& \text { 3) } \forall m \in \lambda^{2} \cdot 0 \\
& \frac{1}{2 T} \int_{-T}^{T} e^{2 n i m \cdot v_{t} \mu t}
\end{aligned}
$$

$$
\begin{align*}
& \text { Fir } v_{t}=x_{0}+\underline{u} t \\
& \text { slope } \alpha \notin(v) \\
& m \neq \underline{u} \neq 0 \quad \forall m \neq 0 \\
& \frac{1}{2 t} \int_{-T}^{t} e^{2 n i m \cdot v_{t}} d t \\
& =e^{2 n i m \cdot x_{0}} \frac{\sin (2 n(\underline{m} \cdot \underline{-}) \Gamma)}{2 n(\underline{m} \cdot \underline{4}) \cdot T}
\end{align*}
$$

Noble: This ran be wade effective: mAssing f smooth α bs not very well $\begin{array}{ll}\text { approximable } & |p-q \alpha| \geq \frac{1}{q^{2}} \\ \text { for }\end{array}$ for $<>1$ for all but fits many q.

Exe - for α not U.W.A

$$
\begin{aligned}
\frac{1}{\bar{T}} \int_{T}^{\Gamma} f\left(v_{t}\right) d t & =\int f \\
& +O\left(\frac{\|\nabla f\|}{T}\right)
\end{aligned}
$$

Back to cunnting
Frx $\underline{a} \leqslant J^{\prime}$ slope α

$$
\begin{aligned}
& \underline{v} \leftarrow s^{\wedge} \quad \underline{v} \cdot \underline{u}=0 \\
& B_{T}=\left\{\begin{array}{ll}
t \underline{u}+s \underline{v} \mid & |t| \leq T \\
& |s| \leq \frac{1}{4}
\end{array}\right\}
\end{aligned}
$$

Thn:

$$
\frac{\#\left(B \wedge \lambda^{2}\right)}{T} \longrightarrow 1
$$

If. F ix $\delta>0$ and

$$
\begin{aligned}
& u_{v}=\langle x 1 v \not v<v<v\} \\
& u_{r} \operatorname{su} p p r \operatorname{tad} \text { in } u_{r} \\
& S \varphi_{f}(x) d x=1 \\
& \Phi_{\gamma}(\underline{x})=\sum_{m \in \pi^{2}} \varphi_{\gamma}(\underline{x}+\underline{h})
\end{aligned}
$$

calculate

$$
\int_{B_{T}} \Phi_{j}(\underline{x}) d \underline{x}
$$

$$
\begin{aligned}
& \int_{B_{+}} \Phi(x) d x=\sum_{n} \int_{\mathbb{R}^{n}} x_{B_{T}}(x) \varphi_{f}(x+i) d x \\
& =\sum_{n=n} \int_{u_{8}} x_{B}(x+n) \varphi_{j}(x) d x \\
& \text { Let } \\
& \left.B^{ \pm}=|t \underline{t}+5 v| \begin{array}{cc}
|t| \leq T \pm \delta \\
|s| \leq \frac{1}{4} \pm v
\end{array}\right\} \\
& \left|1 B_{r}^{-} \wedge \lambda^{2}\right| \leq \int_{B_{\}}} \Phi(x) d x \leq\left|B_{r}^{+} \wedge \lambda^{2}\right| \\
& \int_{\beta_{T}^{-}}^{\top} \Phi\left|\Omega^{2} \wedge B\right| \leq \int_{B_{T}^{\top}} \Phi(x) d x
\end{aligned}
$$

$$
\begin{aligned}
& \int_{B_{T}} \underline{Q}(x) d x \\
& =\int_{-\frac{1}{4}}^{\frac{1}{4}} \int_{-}^{T} \Phi(s v+t a) d t d n \\
& 50 \\
& \frac{1}{T} \int_{B_{r}}\langle(x) d x \\
& =2 \int_{-\dot{\pi}}^{\sum_{i}}\left(\frac{1}{2 T} \int_{-T}^{T} \Phi\left(v_{t}\right) d t\right) d q \\
& \xrightarrow{T \rightarrow \infty} \sum_{\pi} \Phi(x) d x=\int_{R^{2}} \varphi_{r}=1
\end{aligned}
$$

cunbing two estinates:

$$
1-L_{-} \sum_{T \rightarrow \infty} \frac{\left|B_{T} \cap \lambda^{2}\right|}{T} \leq 1+4 \delta
$$

Take $\delta \rightarrow 0$ toyet vesult.

ster This can be mads effertici
for α is nut V.W.A

$$
\left|R^{2} \wedge B_{T}\right|=T+O\left(T^{3 / 4}\right)
$$

* This his for ace direction α
- Met Ma walks for more general sets growing in 1-directim

